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The equity premium puzzle refers to the observation that people
invest far less in the stock market than is implied by measures of
their risk aversion in other contexts. Here, we argue that light
on this puzzle can be shed by the hypothesis that human risk
attitudes were at least partly shaped by our evolutionary his-
tory. In particular, a simple evolutionary model shows that natural
selection will, over the long haul, favor a greater aversion to
aggregate than to idiosyncratic risk. We apply this model—via
both a static model of portfolio choice and a dynamic model
that allows for intertemporal tradeoffs—to show that an aver-
sion to aggregate risk that is derived from biology may help
explain the equity premium puzzle. The type of investor favored
in our model would indeed invest less in equities than other
common observations of risk-taking behavior from outside the
stock market would imply, while engaging in reasonable tradeoffs
over time.

attitudes toward risk | aggregate risk | idiosyncratic risk | equity premium
puzzle | risk-free rate puzzle

This paper lies in lightly explored territory between biol-
ogy and economics, in which the utility functions used

in economics are informed by results on biological evolu-
tion. This approach contrasts with the conventional axiomatic
approach in economics. Consider, for example, the human fond-
ness for sweet or fatty foods. These preferences presumably
arose among our distant ancestors and plausibly reflect the
nutritional and fitness value of such foods in an often dif-
ficult and unpredictable environment. These preferences are
not, however, always appropriate in present postagricultural
and wealthy societies. But the existence of such preferences
is plausible evidence that our biological histories shape some
of our preferences and aversions. (This argument is drawn
from ref. 1.)

The aspects of preferences that are the most promising candi-
dates for biological explanation are aspects that are basic and so
would have been important for humans throughout our history
(2). One of these aspects concerns time preference (see ref. 3,
for example). Another aspect concerns attitudes to risk, which is
the focus here.

The Evolutionary Context. We hypothesize that attitudes to risk
are at least partly hardwired and so persist even if there is
no longer a strong link, or any link at all, between mate-
rial success and fitness. (See ref. 4 for evidence that risk
attitudes are also shaped by culture.) What attitudes toward
risk might then be favored by natural selection? A specific
and striking evolutionary prediction is that individuals ought
to be more averse to aggregate risk—where a single public
coin generates the same outcome for everyone—than they are
to comparable idiosyncratic risk—where multiple independent
coins generate the outcomes (1). We will argue that this pro-
vides a novel resolution of the “equity premium puzzle”—the
“excessive” aversion investors typically display to stock market
risk.

We follow the basic approach of Robson (1), which involves
perhaps the simplest possible biological model. Risk-taking
behavior in a random environment is controlled by alternative
genes (alleles) at a single “locus.” These alleles induce differ-

ent risk behaviors and so compete to fill this locus. The model
is haploid and asexual and features discrete generations with
no carrying capacity or density dependence. (A species is hap-
loid if it carries a single copy of each gene, and it is asexual
if there is no mixing of genetic material inherited from two
parents when producing gametes.) A branching process model
that allows extinction shows, among other things, that the type
that maximizes the expected logarithm of offspring number
over the environments encountered ultimately dominates the
population.

Several of Robson’s results reflect findings from the economic
literature—for example, on portfolios that maximize wealth in
the distant future (5). His results also echo those from the bio-
logical literature on the population genetics of evolution in ran-
dom environments—in particular, the classical “geometric mean
principle.”∗ In a two-allele haploid model where fitness (proba-
bility of survival) fluctuates randomly through time—–reflecting
random environments encountered over discrete generations—
the allele with the higher geometric mean fitness will tend to
ultimately displace the other allele (7–9). (Apparent “balanc-
ing” selection arising from temporal variation in fitness cannot,
therefore, maintain both alleles in a haploid population; i.e.,
see ref. 9.)

Although the allele with the higher geometric mean fitness
tends to dominate the population over the long haul, its expected
frequency does not always increase; rather, this depends on cur-
rent allele frequencies. See ref. 10 for this and other concerns
about the universality of the geometric mean principle.

In the end, the extent to which evolution has endowed us with
particular attitudes to risk is an empirical question. Here, we
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merely ask if the simple evolutionary scenario described above
sheds light on the equity premium puzzle.†

Evolved Attitudes to Aggregate and Idiosyncratic Risk. The differ-
ential impact of aggregate and idiosyncratic economic gambles
on biological success is considered in ref. 1.‡ These results can
best be illustrated by examples. Consider two types of individuals
within an asexual species in a discrete-time setting.

In each period, Type 1 has either 1 or 2 offspring, each with
probability 1/2, and this risk is “idiosyncratic,” that is, indepen-
dent across all individuals and periods. Assume that there is no
density dependence, that the population has size 1 at t = 0, but
the population is “large,” so that the per period growth factor is
always exactly 3/2. It follows that the number of Type 1 indi-
viduals at t is then x (t) = (3/2)t . As a purely formal matter,
although this is a discrete-time setting, it is convenient to use the
equivalent continuous time growth rate ln x(t)

t
= ln(3/2).

On the other hand, although Type 2 individuals again have
either 1 or 2 offspring, each with probability 1/2, the risk is now
“aggregate,” in that all individuals in each period either have 1
offspring or all of them have 2.

Suppose that the initial population of Type 2 at t = 0 is also 1.
Even if this population is also “large,” the number of Type 2’s at
period t is necessarily random, given by ỹ(t) = 2ñ(t), where ñ(t)
is the random number of heads in t flips of a fair coin. It follows
from the strong law of large numbers that a limiting continuous
growth rate exists since ln ỹ(t)

t
= ñ(t)

t
ln 2→ ln

√
2< ln(3/2), with

probability 1, as t→∞.
The evolutionary dominance of Type 1 over Type 2 then fol-

lows from the relationship between the limiting growth rates. We
have ln x(t)/ỹ(t)

t
= ln x(t)

t
− ln ỹ(t)

t
→ ln(3/2)− ln(

√
2)> 0, with

probability 1, so that x(t)
ỹ(t)
→∞, with probability 1, as t→∞.

Hence, Type 1 is the unambiguous evolutionary winner in the
long run.

Although this race is simple in that it lacks interactions
between the types, it shows how certain preferences may be
favored by evolution. Given the choice, individuals should strictly
prefer idiosyncratic risk over aggregate risk with the same
distribution. (These findings are related to those from pop-
ulation genetics on “genotypic homeostasis” in a fluctuating
environment; i.e., see ref. 10.)

It is worth noting that, although Type 2 is unambiguously
beaten in terms of a compelling criterion, it does not always sim-
ply lag behind Type 1. Indeed, the mean of Type 2 keeps pace
with Type 1. That is, since Eỹ(t) = (3/2)t , for all t , it follows that
lnEỹ(t)

t
= ln(3/2) for all t .§ Hence, for finite t , there are many

outcomes where ỹ(t)> x (t). There must then be sequences with
substantially more 2s than 1s, in order to maintain the growth
rate of the mean of the Type 2 population at ln(3/2). In the
limit, however, the probability of all sequences that do not have
a precisely equal number of 1s and 2s tends to 0, and the limit-
ing growth rate of the Type 2 population is only ln

√
2. (Similar

†Another instance of aggregate risk concerns disease outbreaks. For example, at least
with the benefit of hindsight, the resources devoted to the novel “mad cow disease”
per likely casualty now seem disproportionate to those devoted to more familiar heart
disease. Although there are undoubtedly other relevant factors, this could be partly
due to the more pronounced element of unknown shared risk for the former disease—
concerning its mechanism of transmission, for example.

‡ It is argued in ref. 11 that risk aversion in general might have arisen from the greater
aversion to aggregate risk than to idiosyncratic risk that is discussed here. This involves
an apparent evolutionary “mismatch” in that current idiosyncratic risk is treated in the
way that aggregate risk should once have been treated. The current paper supposes,
on the other hand, that individuals continue to discern the distinction.

§ It indeed follows that E(̃y(t))
ỹ(t) →∞, with probability 1, as t→∞. That is, intriguingly,

the mean of the random variable ỹ(t) grows faster than does ỹ(t) itself (1, 2).

results in a biological context are in ref. 12; they are applied in
economics in ref. 13.)

Perhaps the simplest way of converting this biological argu-
ment to an economic example is to suppose that expected
offspring are produced as Ψ(c), where c≥ 0 is consumption and
the nondecreasing Ψ is a biological production function. Sup-
pose that Ψ(c1) = 1 and Ψ(c2) = 2. The present example then
implies that individuals who experience an idiosyncratic gamble
over consumption levels c1 and c2 will outperform those who
experience an aggregate gamble over c1 and c2, where, in both
cases, c1 and c2 have equal probability.

More explicitly, suppose these consumption outcomes c1 and
c2 for Type 2 are generated by aggregate states A and B ,
respectively, where these occur independently across periods.
The Type 1 population, however, is unaffected by the state,
so that c1 and c2 occur independently across individuals with
equal probability in either state. If the individual can choose
between the idiosyncratic gamble over consumption and the
aggregate gamble, she should strictly prefer the former, despite
the two gambles being identical from a purely individualistic
point of view.

This example can be sharpened, so that Type 2 has one off-
spring with probability p and two offspring with probability 1 – p.
That is, there exists p< 1/2 such that Type 1 still outdoes Type 2.
From a strictly individualistic point of view, this contradicts first-
order stochastic dominance or probabilistic sophistication, more
generally. The most successful type is not individualistic but takes
the outcomes of others into account. (See refs. 1 and 3 for further
discussion of the issues this raises.)

This example can also be dramatized in a way that is rele-
vant to the present application. Although zero offspring is bad
from an idiosyncratic point of view, it is catastrophic from an
aggregate point of view. Suppose, that is, that Type 1 has either
zero offspring, with probability p ∈ (0, 1/2), or two offspring,
with probability 1 – p. The expected number of offspring is then
2(1 – p) > 1 and the limiting continuous time growth rate is
ln(2(1 – p)) > 0.¶ Type 2 also has zero offspring, with prob-
ability p ∈ (0, 1/2), or two offspring, with probability 1 – p, but
these outcomes are aggregate. The limiting growth rate for Type
2 is then p ln 0 + (1− p) ln 2 =−∞. This reflects the inevitable
extinction of Type 2, which happens in the first period that
all individuals generate zero offspring. (The evolutionary dom-
inance of Type 1 over Type 2 holds if Type 2 has any probability
q > 0 of zero offspring.)

The most general case treated in ref. 1 is as follows. Suppose
that there are random aggregate states denoted by s . These states
are drawn independently from a given distribution in each of
an infinite number of periods. In each such state s , consump-
tion outcomes are random and independent across individuals
conditional on the state s . Suppose that Ψ(x ) is the expected off-
spring produced by any x . Expected offspring in state s is then
E (Ψ(x )|s). The limiting growth rate of the population is then
the expectation over the states of the logarithm of the expected
offspring conditional on the state:

lnE (Ψ(x )|s)< lnEE (Ψ(x )|s)= lnE (Ψ(x )). [1]

The inequality reflects that the individual prefers aggregate risk
to be converted to comparable idiosyncratic risk. The biological
reason for this preference is that idiosyncratic risk can be diver-
sified within the population, but aggregate risk cannot. When
this distinction is embedded in preferences, the mere possibil-
ity of such biological diversification generates less risk aversion
for idiosyncratic risks than for aggregate risks for the individual.

¶In the more general branching process model ref. 1, with a finite initial population,
2(1 – p) > 1 ensures that the population can grow to infinity.
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Although this distinction arises in a dynamic setting—
reflecting how aggregate outcomes compound over time—the
appropriate criterion has a formally static representation. This
particular representation arises because the age structure of the
population is degenerate with only one adult age. (We sketch an
extension below in A Simple Dynamic Model to a population with
two adult ages, where the criterion is explicitly dynamic.)

However, ref. 14 shows that the distinction between aggregate
and idiosyncratic risk disappears in a continuous time model,
where consumption and offspring are treated as “rates.” They
assume that there is no variation with age in mortality or fertility.

In continuous time with a general age structure, ref. 15 shows
that the distinction between aggregate and idiosyncratic risk
remains as long as mortality or fertility vary with age, although
the simplicity of the criterion from ref. 1 is generally lost.
Indeed, it is possible that an individual even prefers aggregate
risk to strictly comparable idiosyncratic risk. One simple case
where there remains greater aversion to aggregate risk than to
idiosyncratic risk is where there is a lag to first reproduction, or
menarche. This lag plays the role of the period in discrete time.

The model outlined above generates a distinction between
idiosyncratic and aggregate risk that is captured by a logarithmic
transformation of Ψ for the latter case. This is a specific tilt in
favor of idiosyncratic risk. What is crucial is not the precise shape
of the logarithmic function but that it reflect the disastrous aggre-
gate consequences of offspring levels near zero. This qualitative
property will hold for many other functions.

Convex–Concave Ψ in Biology and Economics. The second key ele-
ment of the model here is the assumption that the biological
production function Ψ is at first convex and then concave. It is
important then to defend the empirical plausibility of an initial
convex range, in particular. We do this with evidence first from
biology and then from economics.

A convex–concave production function is not canonical in biol-
ogy, but it has been invoked in several scenarios. Perhaps the best
known of these is a behavioral ecological scenario. This concerns
an organism that confronts an environment that either meets
its energetic (nutritional) needs for survival on average or an
environment that does not.

In the latter case, the optimal foraging strategy is risk-loving: if
one does not expect, for example, to survive the day on the nutri-
ents typically available, then risky foraging behaviors are favored
as one may get lucky, obtaining a large enough payoff in food
to survive. Reductions in food are essentially inconsequential as
one did not expect to survive anyway. Alternatively, if one does
expect to survive the day, then risk-averse foraging behaviors are
favored, as now the downside with a potential failure to survive
is highly consequential.

Mathematically, these intuitions are captured in the behav-
ioral ecology literature via a convex–concave production function
(16–18). A large empirical literature provides some support for
this model (reviewed in refs. 16 and 19). However, complica-
tions have been noted, and alternative hypotheses have been
proposed. (See ref. 20 for a critical review of this and related
literature.)

An evolutionary account of attitudes to risk in economics is
provided in ref. 21. In particular, this hypothesizes that risk-
taking at low levels of wealth would be evolutionarily advanta-
geous if such levels already preclude obtaining a mate, so that
a loss would be inconsequential, whereas sufficiently large gains
would enable a mate to be obtained.

In economics, there is also evidence of human economic risk-
preferring behavior among poorer individuals (22). Demand for
state lotteries, which are actuarially unfair, is highest among
those with the lowest incomes. As incomes rise, individuals shift
to stocks. This is not evidence of risk-loving, of course, since the
stock market is actuarially advantageous.

Finally, a convex–concave payoff function is a salient feature
of prospect theory, where a reference point marks the transition
from the convex range to the concave. This theory is advocated
in ref. 23 and buttressed with rich empirical evidence. The endo-
geneity of the reference point is a key part of prospect theory. It
may ultimately be useful to make the transition here endogenous
also but this is left for future work.

Equity Premium Puzzle. Since we argue that the distinction
between idiosyncratic and aggregate risk can help resolve the
equity premium puzzle, we now describe this puzzle and previous
attempts to resolve it.

There is a profound difficulty in reconciling long-run data on
the stock and bond markets with economic theory, as vividly
established in ref. 24. That is, in a basic additive model of pref-
erences for consumption over time and risk, it is very difficult to
explain why people hold any bonds at all given the vastly superior
average return on stocks (Fig. 1).#

Although stocks are clearly riskier than bonds, an implausible
degree of risk aversion is needed to achieve a reconciliation. The
implausibility arises because other evidence on attitudes to risk
implies more moderate estimates of risk aversion. Some evidence
on more moderate risk aversion derives from property or liability
insurance. For example, ref. 26, using US data on property and
liability insurance, estimates that the coefficient of relative risk
aversion is between 1.2 and 1.8. We argue that it is important
to observe that the property or liability insurance considered in
ref. 26 largely concerns idiosyncratic risk for a single property or
business. Only a small fraction of the total premiums paid for
property insurance, for example, covers earthquakes, hurricanes,
or multiple properties.

The standard additive model of preferences tightly links atti-
tudes to risk and intertemporal tradeoffs, which makes it more
difficult to evaluate the source of the problem posed by the equity
premium puzzle. That is, imposing a high degree of risk aversion
may also distort intertemporal choice.

A pioneering approach is taken in ref. 27, which constructs a
recursive nonadditive model of preferences over consumption
streams that allows risk aversion and intertemporal inequal-
ity aversion to be independently chosen. However, the best
estimates in ref. 28 are that the elasticity of intertemporal substi-
tution is less than 1 and the coefficient of relative risk aversion is
close to 1. They do not then claim to resolve the equity premium
puzzle.

Another approach to untying risk aversion and intertemporal
choice is taken in ref. 29. The author makes the illuminating obser-
vation (p. 414) that the difficulty in explaining the equity premium
using this model stems from the need to use an implausibly high
coefficient of relative risk aversion (CRRA). That is, the model
fits the data well with a CRRA of 45, a plausible elasticity of
intertemporal substitution and a plausible discount factor.

The present simplified model, which predicts a flexible degree
of greater risk aversion to aggregate risks, then represents
a promising avenue. A more general dynamic version of the
present model should be calibrated on data for stocks and
bonds. It would be worthwhile if it could ultimately contribute
an element to any final resolution of the puzzle.

An important approach in the literature that addresses the
equity premium puzzle involves the introduction of ambiguity—
uncertainty about the underlying distribution of risks. The
notion of ambiguity allows the individual to be averse to such
higher-order uncertainty. That is, the individual may consider

#We are very grateful to Ken Kasa for constructing this for us. The bars are National
Bureau of Economic Research-dated recessions. The ex ante equity premium is the fitted
value from the regression of the 1-year ahead excess return on the current dividend
yield, as in ref. 25. It has an average value of 6.8%.
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Fig. 1. US equity risk premium 1927 to 2019.

such a two-tiered structure as less desirable than the reduced
form, one-tier risk obtained in a straightforward fashion by
combining the probabilities from the two tiers.

A key paper that accounts for ambiguity aversion is ref. 30.
The criterion proposed there is formally similar to the biological
criterion discussed in Evolved Attitudes to Aggregate and Idiosyn-
cratic Risk. The role played by aggregate risk here is played by
ambiguity there, although the function ln here is replaced by a
more general concave function capturing the differential aver-
sion to ambiguity. Aggregate risk and ambiguity may sometimes
be difficult to distinguish empirically.‖ To the extent this is so,
the current biological approach could be viewed as providing a
biological foundation for ambiguity aversion.

The model of ref. 31 permits independent specification of atti-
tudes to risk, attitudes to ambiguity, and intertemporal inequal-
ity. (The recursive intertemporal model of ref. 32 also generalizes
ref. 27 to allow for ambiguity aversion and ref. 30 to allow for
intertemporal substitution.)

When this generalized model is applied to the equity premium
puzzle, however, a high level of ambiguity aversion is still needed.
(The parameter η in ref. 31 is an elasticity measuring ambiguity
aversion and is estimated to be 8.86.) There is not much evidence
on the level of ambiguity aversion in other contexts, but the plau-
sibility of this resolution depends on such evidence also yielding
comparably high estimates of ambiguity aversion.

A common feature of many resolutions of the equity premium
puzzle is indeed that they raise issues concerning whether behav-
ior outside the context of the stock market would be consistent
with the estimated model, whether the resolution builds in a high
level of ambiguity aversion, or a high level of risk aversion, with
respect to stocks.∗∗

‖Investors are often thought to prefer domestic stocks. In this case, the interpreta-
tion that international stocks have returns that are partly ambiguous seems more
compelling, however, than the interpretation that international stocks have a larger
aggregate or common component than domestic stocks.

**Ref. 33 also develops a model of intertemporal asset pricing that elaborates ref. 1.
However, a fairly high coefficient of relative risk aversion (5 or 6) is still needed.

The partial resolution of the puzzle offered here argues that
humans may have evolved to be more averse to the aggregate
risk generated by stocks than to other idiosyncratic risk. Our
argument holds even if individuals are aware, for example, of the
distribution of persistent growth rates or of the extremes of the
distribution of stock market collapses.

Present Contribution. The purpose of the present paper is to
demonstrate how aggregate risk might entail an arbitrarily large
degree of extra risk aversion relative to idiosyncratic risk. In a
simple pedagogic atemporal setting, we show that an individual
should have less exposure to stocks—where there is aggregate
risk—than would be suggested by her attitudes to idiosyncratic
risk (property loss, for example).

Indeed, under plausible assumptions on the function Ψ, the
difference in the effect of the two types of risk on portfolio choice
can be arbitrarily large. Hence, this can reconcile evidence of a
coefficient of relative risk aversion near 1 when considering prop-
erty loss, for example, with evidence of a coefficient of relative
risk aversion that is an order of magnitude or more greater when
considering exposure to the stock market.†† We further show
that these results can be extended to a simple dynamic model
that allows for intertemporal substitution. This simple model
maintains an arbitrarily large gap between attitudes to aggre-
gate and idiosyncratic risk but generates plausible elasticities of
intertemporal substitution.

The Static Model
The Biological Production Function Ψ. The argument sketched
above in Evolved Attitudes to Aggregate and Idiosyncratic Risk
implies that the criterion that should evaluate aggregate risk
is E ln Ψ, where EΨ evaluates idiosyncratic risk. Since the
function ln is strictly concave, such a transformation produces

††Recall that ref. 26, using US data on property and liability insurance, estimates that
the coefficient of relative risk aversion is between 1.2 and 1.8. This sharply contrasts
with ref. 29, for example, which observes that data on the stock market suggests the
need for a much higher CRRA—perhaps 45.
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unambiguously greater risk aversion, and this is a key element
of the present argument. However, this extra risk aversion alone
cannot resolve the equity premium puzzle. Suppose, for example,
that Ψ(x ) = xγ for γ ∈ (0, 1). (It has to be that Ψ≥ 0 given the
interpretation of Ψ as expected offspring.) In this case, ln Ψ(x ) =
γ ln(x ). The coefficient of relative risk aversion for Ψ is then 1− γ,
whereas that for ln Ψ is 1> 1− γ. Although this effect goes in the
right direction, these are modest coefficients with a difference that
is far too small in the context of the equity premium puzzle.

The second key element then needed for the present argu-
ment is defended above in Convex–Concave Ψ in Biology and
Economics. This element is the assumption that the function Ψ
has a shape inspired by production functions in economics. Such
production functions Ψ would satisfy—Ψ is twice differentiable,
with Ψ(0) = 0, Ψ′(x )> 0, for x ≥ 0, and there exists A> 0 such
that Ψ

′′
(x )> 0, for x ∈ [0,A) but Ψ

′′
(x )< 0, for x >A.

This supposes that increasing x when it is low has an increas-
ing marginal effect on expected offspring and it is only for larger
values that a decreasing marginal effect is evident. This general-
izes the idea that there is a threshold effect, so that there must
be at least a minimum level of x to generate positive offspring.

Indeed, for simplicity and tractability, we directly assume such
a threshold effect, as a limiting case of the general convex–
concave function Ψ described above. We assume then there
is a threshold A> 0 such that Ψ(x ) = 0, x ≤A but Ψ′(x )>

0, Ψ
′′

(x )< 0, x >A. We assume Ψ is continuous. It is also
differentiable except at x =A (Fig. 2).

This threshold formulation is simple, but it seems that the
results will be robust to the more general formulation, as long
as Ψ is sufficiently close to zero initially.

Stocks Versus Bonds. Suppose bonds have certain return R, but
the stock market is risky with returns 0< r1 < r2 < . . .< rS with
probabilities π1 > 0, . . . ,πS > 0, where

∑
s πs = 1. This is aggre-

gate risk. To avoid triviality, we suppose that r1 <R and rS >R,
as, otherwise, the optimal choice is obviously to invest only in
stocks or only in bonds. Given the threshold formulation, we sim-
ilarly assume that RW >A, so a portfolio invested only in bonds
generates positive offspring. The investor has initial wealth W >
0 and puts a fraction α into the stock market, with 1−α in
bonds.‡‡

Aggregate Risk. The threshold formulation implies that there
exists an upper bound ᾱ on the fraction of the portfolio in stocks.
It must be that the worst outcome for the market yields strictly
positive offspring given the criterion ln Ψ(x ).§§

This is because zero offspring is catastrophic as an aggre-
gate outcome, reflected in ln(0) =−∞. On the other hand,
although zero offspring is bad as an idiosyncratic outcome, it is
not catastrophic. This yields an extreme form of the evolutionary
preference for idiosyncratic risk over comparable aggregate risk.

That is, it must be that αr1W + (1−α)RW >A, so that α<
RW−A

(R−r1)W
= ᾱ. The investor should solve

max
α∈[0,ᾱ]

V (α) =
∑
s

πs ln Ψ (αrsW + (1−α)RW ), [2]

‡‡It will follow that the agent will not wish to short sell the risky asset by choosing
α< 0. On the other hand, she can borrow at rate R to finance additional stock market
purchases and so can choose α> 1. It is straightforward to analyze the model under
the restriction that α≤ 1. As long as it is assumed that αA < 1, then it still follows
that αI >αA , although it may be that αI = 1 as a corner solution. The assumption
that αA < 1 is realistic, especially in the light of the equity premium puzzle. However,
if αA = 1 is allowed then the model would predict that αI = 1 =αA.

§§Effectively, the criterion ln Ψ(x) implies a constraint analogous to limited liability on
the individual. That is, it is effectively ruled out for the individual to have wealth less
than or equal to A.

Fig. 2. Biological production function with A = 1.

which is strictly concave in α∈ [0, ᾱ]. We have

V ′(α) =
∑
s

πs(rs −R)WΨ′ (αrsW + (1−α)RW )

Ψ (αrsW + (1−α)RW )
. [3]

It follows readily that V ′(0)> 0 if and only if r̄ >R, where
r̄ =

∑
s πsrs . That is, the investor chooses a strictly positive

investment in the stock market if and only if the expected rate of
return on the stock market exceeds that on the safe asset, bonds,
which we assume to be true. (In a more general model, the price
of the risky asset must be low enough to make the stock returns
high enough, so that the risky asset is held.)

Suppose then that αA ∈ (0, ᾱ) is the optimum fraction of
wealth that should be invested in the stock market given that the
risk is aggregate. Since V ′(0)> 0 and V ′(ᾱ) =−∞, αA is the
unique solution of

V ′(α) =
∑
s

πs(rs −R)WΨ′ (αrsW + (1−α)RW )

Ψ (αrsW + (1−α)RW )
= 0. [4]

What does this imply about how the optimal αA ∈ (0, ᾱ) varies
with W ? Since ᾱ= RW−A

(R−r1)W
< 1, then dᾱ

dW
> 0, so that increasing

W allows the share of the risky asset to increase. An increase in
αA is then a plausible consequence.

The optimal αA is directly characterized by the condition
V ′(α) = 0. By a standard result, dαA

dW
> 0 if the criterion ln Ψ

exhibits decreasing relative risk aversion. The moving threshold
makes this possibility more plausible.

If, for example, Ψ(x ) = (x −A)γ , for x ≥A, then ln Ψ(x ) =
γ(x −A) and the coefficient of relative risk aversion is x

x−A
,

which is decreasing in x for x ≥A.
We next show that, if the risk aversion of the individual is

estimated in contexts with idiosyncratic risk, she will choose less
exposure to the stock market—with its aggregate risk—than this
risk aversion predicts.

Comparison with Idiosyncratic Risk. Consider the counterfactual
thought experiment that the individual faces precisely the same
portfolio choice problem but where her preferences are those
derived from idiosyncratic risk. That is, suppose that Ψ has
been estimated based on observations involving idiosyncratic
risk (insurance against automobile accidents, for example). What
would these estimated preferences imply about portfolio choice?

First, note that there is an upper bound to α in this situation
as well. We assume that the individual can never attain negative
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wealth, so that αr1W + (1−α)RW ≥ 0. Hence, α≤ α̂= R
R−r1

,
where α̂ > 1 and α̂ > ᾱ.

Suppose then the individual maximizes lnEΨ, or, equiva-
lently, simply EΨ. The individual would then solve

max
α∈[0,α̂]

U (α) =
∑
s

πsΨ (αrsW + (1−α)RW ). [5]

Overall, U need not be concave, but it is concave on [0, ᾱ).¶¶

It follows that

U ′(α) =
∑
s

πs(rs −R)WΨ′ (αrsW + (1−α)RW ) [6]

and that U ′(0)> 0 because we have assumed that r̄ >R.
Suppose then that αI ∈ (0, α̂] is the fraction of wealth that

would be invested in the stock market if the individual treats the
risk there as idiosyncratic and maximizes EΨ.

Proposition. Under the assumptions described above, αI >αA.
That is, the fraction of wealth the individual would be incorrectly
anticipated to invest in the stock market is strictly greater than the
fraction that is optimal.
Proof: We show that U ′(αA)> 0. To do this, recall that 0< r1 <
r2 < . . .< rS . Define

π̄s = k̄πs
Ψ′ (αrsW + (1−α)RW )

Ψ (αrsW + (1−α)RW )
[7]

and
π̂s = k̂πsΨ

′ (αrsW + (1−α)RW ), [8]

where k̂ and k̄ are such that
∑

s π̂s =
∑

s π̄s = 1. Since
Ψ (αrsW + (1−α)RW )is increasing in s , it follows that the dis-
tribution given by the π̂s first order stochastically dominates that
given by the π̄s , so

∑
s π̄srs <

∑
s π̂srs . At α=αA, we have

V ′(αA) =

(∑
s

π̄srs −R

)
W = 0, [9]

so that

U ′(αA) =

(∑
s

π̂srs −R

)
W > 0. [10]

If αI ≥ ᾱ, then αI >αA, because ᾱ >αA. Otherwise, if αI < ᾱ,
then αI >αA follows from the concavity of U on [0, ᾱ) and
U ′(αA)> 0. This completes the proof.

Furthermore, αA can display an arbitrarily high degree of risk
aversion relative to αI , in the present context, as we show below
in Arbitrarily High Aversion to Aggregate Risk.

Arbitrarily High Aversion to Aggregate Risk. Suppose, for simplic-
ity, that S = 2, where r1 <R has probability π> 0 and r2 >R
has probability 1−π> 0. We have πr1 + (1−π)r2 = r̄ >R and
RW >A.

It must be true that αA< ᾱ regardless of π and r2. However,
this contrasts with the observation that αI will attain its upper
bound if π is small enough. Consider then the value of αI >αA.

Whenever α> ᾱ, then Ψ(αr1W + (1−α)RW ) = 0, so that
U (α) = (1−π)Ψ(αr2W + (1−α)RW ), which is increasing
(and concave) in α since r2 >R. This is because increasing α has

¶¶Such nonconcave U may generate risk-taking behavior over gambles with zero off-
spring as one possibility. This possibility does not arise with the criterion ln Ψ, as
discussed in Aggregate Risk. The shape of U(α) is illustrated in Fig. 3 for the case
that S = 2 and where αI = α̂.

no downside in this range. It follows that α= α̂ is the best choice
of α in [ᾱ, α̂].

If, on the other hand, α< ᾱ, then U is concave on [0, ᾱ) and

U ′(α) =π(r1−R)WΨ′(αr1W + (1−α)RW )

+ (1−π)(r2−R)WΨ′(αr2W + (1−α)RW ). [11]

It is clear that limα↑ᾱU ′(α)> 0 whenever π> 0 is small enough,
so that the concavity of U implies that ᾱ is the best choice in
[0, ᾱ].

Altogether, then, it follows that αI = α̂, whenever π> 0 is
small enough (Fig. 3).

Hence, when π> 0 is small enough, although the optimal
share, αA in stocks is bounded by ᾱ < α̂, where ᾱ is independent
of π, it nevertheless follows that αI = α̂.

Proposition. Under the assumptions given for the example
described above, αA< ᾱ but αI = α̂ > ᾱ, whenever π is sufficiently
small. That is, the fraction of wealth that the individual would be
incorrectly anticipated to invest in the stock market is maximal if π
is small enough. Nevertheless, the optimal fraction may be bounded
well below this maximal level.

Hence, the portfolio choice that would be anticipated based on
observed choice under idiosyncratic risk (using Ψ) differs signifi-
cantly from the portfolio choice that is evolutionarily appropriate
for aggregate risk (using ln Ψ).

The bound on αA derived here for the utility ln Ψ does not
arise with conventional utility, no matter how risk-averse this
might be. Suppose, for example, that the utility used to evaluate
portfolio choice has constant coefficient of relative risk aversion
greater than 1 and so is of the form v(x ) =−x−γ , for γ > 0, and
all x ≥ 0. Then, no matter how large the fixed value of γ might be,
in the limit as π→ 0, any such utility must eventually put maximal
wealth into the stock market.

These results will be less stark for a general convex–concave
Ψ function, but they seem bound to still hold qualitatively if Ψ is
close to zero initially.

Endogenous Static Risk Free Rate. Many theoretical discussions of
the equity premium puzzle are based on the Lucas tree model
from ref. 34. The stock market is the economy and generates
random dividends, as fruit falling from a tree. There is no actual
technology that permits risk-free investment, but a risk-free asset
can be constructed and priced. The price of this asset must then
adjust to clear the market at zero. (See ref. 29, for example.) The
implied risk-free rate is then such that the representative agent
chooses to hold only the risky stock market asset. This risk-free

Fig. 3. The function U(α) with ᾱ= 1 and α̂= 2, when U′(1)> 0.
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rate is too low, which is the flip side of the amount invested in
stocks being too low in this static model.

With aggregate risk, it must be that ᾱ > 1, since, otherwise,
αA< 1. Since αA = 1, then

V ′(1) =
∑
s

πs(rs −R)WΨ′ (rsW )

Ψ (rsW )
= 0, [12]

characterizing R̄, say, as R̄ =
∑

s π̄srs for π̄s = k̄πs
Ψ′(rsW )
Ψ(rsW )

,
where k̄ is such that

∑
s π̄s = 1.

For idiosyncratic risk, we have α̂ > ᾱ> 1. Then αI = 1 implies

U ′(1) =
∑
s

πs(rs −R)WΨ′ (rsW )= 0, [13]

which characterizes R̂, say, as R̂ =
∑

s π̂srs for
π̂s = k̂πsΨ

′ (rsW ), where k̂ is such that
∑

s π̂s = 1.
The distribution given by the π̂s first-order stochastically dom-

inates that given by the π̄s since Ψ (rsW ) is increasing in s . We
have shown then that R̂> R̄, so the observed risk-free rate is
too low—lower than the rate anticipated on the basis of project-
ing estimated preferences over idiosyncratic gambles to the stock
market. That is:

Proposition. Under the assumptions described above, R̂> R̄. The
observed risk-free rate, R̄, is too low, that is, lower than the rate,
R̂, anticipated on the basis of projecting estimated preferences over
idiosyncratic gambles to the stock market.

A full discussion of the equity premium puzzle requires a
dynamic model in which explicit intertemporal tradeoffs are pos-
sible. This because investment in stocks fundamentally involves
tradeoffs over time that the above static model abstracts away
from.

A Simple Dynamic Model
It is important then to develop a more general biological model
in which intertemporal tradeoffs are possible, but the effects of
idiosyncratic and aggregate risk can still be compared. This more
general model maintains the assumption that there is no density
dependence. The results will fit the template described in ref. 29
(p. 414) of extremely high aversion to stock market risk but a
plausible elasticity of intertemporal substitution and (implicitly
but crucially) plausible attitudes to other risks.

The analysis of a general age-structured evolutionary model
incorporating aggregate risk is complex, as illustrated in ref. 3.
This will be the focus of future research. (Another interesting
angle would be to consider the implications of “bet-hedging” [as
in ref. 6] in this context.) To demonstrate the potential of the
biological approach for the present purpose, we confine attention
to the simplest possible case with just two adult age classes.

Individuals are born at age a = 0, survive to age a = 1 with
probability δ0 ∈ (0, 1), producing Ψ(x1) expected offspring at
a = 1. They then survive to age a = 2 with probability δ1 ∈ (0, 1),
producing Ψ(x2) expected offspring at a = 2. Here, xa represents
economic resources available at age a = 1, 2, respectively, and Ψ
is the biological production function described above in The Bio-
logical Production Function for the static model. This function
plays the role of utility for situations lacking aggregate risk; for
simplicity, the function is assumed to be age-invariant.

Suppose the xa are constant, again for simplicity, and consider
the evolution of the age-structured population in discrete time.
This system is deterministic assuming the population is large and
is given as

N (t + 1) =N (t)L where N (t) = (N1(t),N2(t))

is the row vector describing the age-structured adult population

at date t = 0, 1, . . . and L=

[
δ0Ψδ1
δ0Ψ 0

]
is the “Leslie matrix.” It is

a consequence of the Perron–Frobenius Theorem that the popu-
lation settles down into steady-state growth where the age struc-
ture of the population is constant, so that N (t + 1) =λN (t), for
some λ> 0. This limiting growth factor is the unique positive
solution for λ of the Euler–Lotka equation (2) (λ is the dominant
eigenvalue of L):

1 =
δ0Ψ(x1)

λ
+
δ0δ1Ψ(x2)

λ2
. [14]

Idiosyncratic risk at a = 1, at a = 2, or both is evaluated by taking
the expectation of Ψ; indeed, the definition of Ψ builds in an
expectation already.
The criterion Ψ(x1) + δ1Ψ(x2)

λ
ties together attitudes to intertem-

poral choice and attitudes to idiosyncratic risk in the standard
fashion. (If λ is maximal, then this criterion must be maximized
given that value of λ [see ref. 2].) For example, if Ψ(x ) = (x −
A)γ , for x ≥A and γ ∈ (0, 1), the elasticity of intertemporal
substitution is x−A

(1−γ)x
→ 1

1−γ ∈ (1,∞) as x→∞.
Crucially, we now show that attitudes to aggregate risk are

nonstandard, and there can be arbitrarily greater aversion to
aggregate risk than to idiosyncratic risk. (This separation induced
between attitudes to intertemporal choice and aggregate risk is
achieved in a fashion that is unrelated to ref. 27, which separates
attitudes to intertemporal choice and all forms of risk.)

As a minor simplification, suppose that δ0 = δ1 = δ. More
importantly, suppose x1 = x2, and there are two realizations of
this common value: x1 and x2, arising in states 1 and 2, respec-
tively. Suppose the state is revised independently in periods
0, τ , 2τ . . ., for τ > 0. If it is revised, it becomes state 1 with prob-
ability π and state 2 with probability 1−π. We consider the limit
as τ→∞.

Suppose that λi is the solution of the Euler–Lotka Eq. 14 for
x1 = x2 = x i , for i = 1, 2. The effect of the infrequent transition
is that the population will usually be in steady state growth. That
is, the substantial complications introduced by the transitions
from one regime to the other have only a small effect. (Without
this assumption, the problem involves characterizing the growth
rate of a random product of Leslie matrices, which is a difficult
problem to analyze.)

More precisely, consider the total population, P(T ), say, at
date T = n̄τ = (n̄1 + n̄2)τ , where n̄i is the number of occur-
rences of regime i = 1, 2, and n̄1 + n̄2 = n̄ . If P(0) = 1, which is
without loss of generality, then

1

T
lnP(T ) =

1

T

∑
n∈S1

ln
P((n + 1)τ)

P(nτ)
+

1

T

∑
n∈S2

ln
P((n + 1)τ)

P(nτ)
,

[15]

where Si is the subset of the integers {0, . . . , n̄ − 1} such that
n ∈Si if and only if state i = 1, 2 is drawn in period nτ .

Fix any ε> 0, and choose τ large enough that

1

τ
ln

P((n + 1)τ)

P(nτ)
∈ [lnλi − ε, lnλi + ε] [16]

for all n ∈Si , for i = 1, and for i = 2. [This can done uniformly in
the age distribution in P(nτ); see ref. 35.] For such τ , it follows
that ∣∣∣∣ 1

T
lnP(T )− (f1 lnλ1 + f2 lnλ2)

∣∣∣∣≤ ε, [17]

where fi = n̄i
n̄

, i = 1, 2. Since (f1, f2)→ (π, 1−π), as n̄→∞, with
probability 1, the long-run growth rate of the population can
be made arbitrarily close to π lnλ1 + (1−π) lnλ2, by choosing
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ε small enough (and hence τ large enough). Evolutionary suc-
cess is then measured by the criterion E lnλ. (See ref. 15 for a
rigorous analysis of a more general continuous-time model.)

Since the population is generally close to steady-state growth
at rate lnλ1 or lnλ2, the observations made already concern-
ing the elasticity of intertemporal substitution remain valid. The
appropriate utility is always Ψ; higher values of λ merely imply a
higher factor representing the pure rate of time preference, λ/δ.

The effect of aggregate risk involves how λ depends on
offspring Ψ. Using the quadratic formula to solve the Euler–
Lotka equation for the (unique) positive root of λ yields λ=
Ψ+
√

Ψ2+4Ψ

2
δ. Hence, dλ

dΨ
= 1+(Ψ2+4Ψ)−1/2(Ψ+2)

2
δ > 0, so that

d2λ
dΨ2 =− 2δ

(Ψ2+4Ψ)3/2
< 0. Thus, λ(Ψ) is an increasing concave

function.
Aggregate risk is evaluated by the criterion E lnλ(Ψ(x )).

Since λ(0) = 0, the results of the static model carry over to this
dynamic case. That is, λ(Ψ(x )) = 0 for x ≤A and λ(Ψ(x )) is con-
cave for x ≥A. The concavity of λ implies that there is indeed
more risk aversion for aggregate risk relative to idiosyncratic risk
in this dynamic model than there was in the static case.##

##More generally, suppose that Ψa are expected offspring at ages a = 1, 2. If δ0 = δ1 =

δ, the Euler–Lotka equation is 1 = δΨ1/λ+ δ2Ψ2/λ
2. The positive solution is now

λ= δ(Ψ1 +
√

Ψ2
1 + 4Ψ2)/2. It follows readily thatλ is an increasing concave function

of Ψ2 alone. Interestingly, however, λ is an increasing convex function of Ψ1. Hence,
younger adults are then less averse to aggregate risk than are older adults. This is
special case of a result for a continuum of ages in ref. 15, which suggests a biological
explanation for the observed tendency of older individuals to move out of the stock
market—a tendency that is awkward to explain with conventional preferences.

Crucially, the elasticity of intertemporal substitution is that
derived from the criterion that assesses idiosyncratic risk, Ψ(x ),
and this does not entail implausibly low values.

Conclusion
We investigate the implications of a biological approach to risk
attitudes by considering the implications for portfolio choice.
In a static model, an individual chooses less exposure to the
stock market—with aggregate risk—than would be implied by
her attitudes to idiosyncratic risk. Alternatively, if the risk-
free rate is endogenously set to clear the market for the safe
asset at zero, the observed risk-free rate is lower than would
be implied by her attitudes to idiosyncratic risk. Furthermore,
the difference can be large enough to account for the equity
premium puzzle.

We sketch how these results could arise in a more general
dynamic model. In an example where there are two adult ages,
there can also be a large difference between attitudes to aggre-
gate and idiosyncratic risk, while the elasticity of intertemporal
substitution remains plausibly high.

Data Availability. Data for Fig. 1 are available online from
ref. 36.

ACKNOWLEDGMENTS. Helpful comments were made by the editors, four
referees, Larry Epstein, Ken Kasa, Peter Klibanoff, Philipp Sadowski, Larry
Samuelson, and participants, especially Andrew Lo, in the online confer-
ence “Evolutionary Models of Financial Markets,” organized by Simon
Levin and Andrew Lo and held by the Massachusetts Institute of Tech-
nology Laboratory for Financial Engineering in June 2020. A.J.R. thanks
the Social Sciences and Humanities Research Council of Canada for finan-
cial support. H.A.O. thanks the University of Rochester for financial
support.

1. A. J. Robson, A biological basis for expected and non-expected utility. J. Econ. Theor.
68, 397–424 (1996).

2. A. J. Robson, L. Samuelson, “The evolutionary foundations of preferences” in Hand-
book of Social Economics, J. Benhabib, A. Bisin, M. Jackson, Eds. (North Holland,
Amsterdam, The Netherlands, 2011), pp. 221–310.

3. A. J. Robson, L. Samuelson, The evolution of time preference with aggregate
uncertainty. Am. Econ. Rev. 99, 1925–1953 (2009).

4. T. Dohmen, A. Falk, D. Huffman, U. Sunde, The intergenerational transmission of risk
and trust attitudes. Rev. Econ. Stud. 79, 645–677 (2012).

5. L. E. Blume, D. Easley, Economic natural selection. Econ. Lett. 42, 281–289 (1993).
6. W. S. Cooper, R. H. Kaplan, Adaptive “coin-flipping”: A decision theoretic examina-

tion of natural selection for random individual variation. J. Theor. Biol. 94, 135–151
(2004).

7. E. R. Dempster, Maintenance of genetic heterozygosity. Cold Spring Harbor Symp.
Quant. Biol. 20, 25–32 (1955).

8. J. H. Gillespie, Natural selection with varying selection coefficients—A haploid model.
Gene. Res. 21, 115–120 (1973).

9. J. H. Gillespie, The Causes of Molecular Evolution (Oxford University Press,
1994).

10. S. A. Frank, Natural selection. I. Variable environments and uncertain returns on
investment. J. Evol. Biol. 24, 2299–2309 (2011).

11. R. Zhang, T. J. Brennan, A. W. Lo, The origin of risk aversion. Proc. Natl. Acad. Sci.
U.S.A. 111, 17777–17782 (2014).

12. R. C. Lewontin, D. Cohen, On population growth in a randomly varying environment.
Proc. Natl. Acad. Sci. U.S.A. 62, 1056–1060 (1969).

13. I. Martin, On the valuation of long-dated assets. J. Polit. Econ. 120, 346–358
(2012).

14. R. Robatto, B. Szentes, On the biological foundation of risk preferences. J. Econ.
Theor. 172, 410–422 (2017).

15. A. J. Robson, L. Samuelson, Evolved attitudes to idiosyncratic and aggregate risk in
age-structured populations. J. Econ. Theor. 181, 44–81 (2019).

16. L. Real, T. Caraco, Risk and foraging in stochastic environments. Annu. Rev. Ecol.
Systemat. 17, 371–390 (1986).

17. J. M. McNamara, A. Houston, Risk-sensitive foraging: A review of the theory. Bull.
Math. Biol. 54, 355–378 (1992).

18. P. A. Bednekoff, Risk-sensitive foraging, fitness, and life histories: Where does
reproduction fit into the big picture?. Am. Zool. 36, 471–483 (1996).

19. T. Caraco et al., Risk-sensitivity: Ambient temperature effects foraging choice. Anim.
Behav. 39, 338–345 (1990).

20. A. Kacelnik, M. Bateson, Risky theories—The effects of variance on foraging decisions.
Integr. Comp. Biol. 36, 402–434 (1996).

21. A. J. Robson, The evolution of attitudes to risk: Lottery tickets and relative wealth.
Game. Econ. Behav. 14, 190–207 (1996).

22. C. T. Clotfelter, P. J. Cook, Selling Hope: State Lotteries in America (Harvard University
Press, Cambridge, MA, 1991).

23. D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk.
Econometrica 47, 263–291 (1979).

24. R. Mehra, E. C. Prescott, The equity premium: A puzzle. J. Monetary Econ. 15, 145–161
(1985).

25. E. F. Fama, K. R. French, Dividend yields and expected stock returns. J. Financ. Econ.
22, 3–25 (1988).

26. G. G. Szpiro, Measuring risk aversion: An alternative approach. Rev. Econ. Stat. 68,
156–159 (1986).

27. L. G. Epstein, S. E. Zin, Substitution, risk aversion, and the temporal behavior of con-
sumption and asset returns: A theoretical framework. Econometrica 57, 937–969
(1989).

28. L. G. Epstein, S. E. Zin, Substitution, risk aversion, and the temporal behavior of
consumption and asset returns: An empirical analysis. J. Polit. Econ. 99, 263–286
(1991).

29. P. Weil, The equity premium puzzle and the risk-free rate puzzle. J. Monetary Econ.
24, 401–421 (1989).

30. P. Klibanoff, M. Marinacci, S. Mukerji, A smooth model of decision making under
ambiguity. Econometrica 73, 1849–1892 (2005).

31. N. Ju, J. Miao, Ambiguity, learning, and asset returns. Econometrica 80, 559–591
(2012).

32. P. Klibanoff, M. Marinacci, S. Mukerji, Recursive smooth ambiguity preferences. J.
Econ. Theor. 144, 930–976 (2009).

33. E. Iantchev, Asset-pricing implications of biologically based non-expected utility. Rev.
Econ. Dynam. 16, 497–510 (2013).

34. R. E. Lucas, Asset prices in an exchange economy. Econometrica 46, 1429–1445 (1978).
35. A. J. Robson, L. Samuelson, The evolution of intertemporal preferences. Am. Econ.

Rev. 97, 496–500 (2007).
36. R. J. Shiller, Online data Robert Shiller, U.S. Stock Markets 1871–Present and CAPE

Ratio, http://www.econ.yale.edu/∼shiller/data.htm (2020).

8 of 8 | PNAS
https://doi.org/10.1073/pnas.2015569118

Robson and Orr
Evolved attitudes to risk and the demand for equity

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
27

, 2
02

1 

http://www.econ.yale.edu/~shiller/data.htm
https://doi.org/10.1073/pnas.2015569118

